Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Total Environ ; : 172680, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663631

RESUMO

Municipal effluents discharged from wastewater treatment plants (WWTPs) are a considerable source of microplastics in the environment. The dynamic profiles of microplastics in treatment units in WWTPs with different treatment processes remain unclear. This study quantitatively analyzed microplastics in wastewater samples collected from different treatment units in two tertiary treatment plants with distinct processes. The influents contained an average of 15.5 ±â€¯3.5 particles/L and 38.5 ±â€¯2.5 particles/L in the two WWTPs with in the oxidation ditch process and the integrated fixed-film activated sludge process, respectively. Interestingly, microplastic concentrations in the influent were more influenced by the population density in the served area than sewage volume or served population equivalent. Throughout the treatment process, concentrations were reduced to 1.5 ±â€¯0.5 particles/L and 1.0 ±â€¯1.0 particles/L in the final effluents, representing an overall decrease of 90 % and 97 %, in WWTPs with the oxidation ditch process and integrated fixed-film activated sludge process, respectively. A significant proportion of the microplastics were removed during the primary treatment stage in both WWTPs, with better performance for foam, film, line-shaped and large-sized microplastics. Most microplastics were accumulated in activated sludge, indicating its key role as the primary sink in WWTPs. The multiple correspondence analysis identified laundry washing and daily necessities such as packaging and containers as the major contributors to microplastics in WWTPs. The study proposed recommendations for upgrading WWTPs, modifying designs, and implementing strategies to reduce microplastic sources, aiming to minimize the release of microplastics into the environment. These findings can shed lights on the sources of microplastics in WWTPs, and advance our understanding of the mechanisms for more effective microplastic removals in wastewater treatment technologies in future applications.

2.
Sci Total Environ ; 928: 172264, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583635

RESUMO

Diagnostic features in near-infrared reflectance spectroscopy (NIRS) are the foundation of knowledge-based approach of petroleum hydrocarbon determination. However, a significant challenge arises when analyzing samples with low levels of petroleum hydrocarbon pollution, as they often lack distinctive diagnostic features in their sample NIRS spectra, limiting the effectiveness of this approach. To address this issue, we have developed a technical workflow for diagnostic spectrum construction and parameterization based on spectral subtraction. This method was applied on a set of NIRS spectra from soil samples that were contaminated with petroleum hydrocarbons (ranged between 178 and 1716 mg/kg of total petroleum hydrocarbon). Then two diagnostic features for low-level petroleum hydrocarbon pollution were found: (1) An overall downward concave emerged on diagnostic spectrum within both 2290-2370 nm and 1700-1780 nm for all low pollution levels even below 200 mg/kg; (2) An indicative pattern of asymmetric "W-shaped" double absorption valley occurred for those exceeding 1000 mg/kg, and its valleys located near 2310 nm, 2348 nm or 1727 nm, 1762 nm stably. These two features on diagnostic spectrum could be parameterized to detect, and the detection limit was at least about 10-50 times lower than that based on sample spectrum. These findings update our understanding on the detectability of spectral response from low petroleum hydrocarbon pollution, and widely extend the application of knowledge-based NIRS approach in either field detection or remote sensing identification for environmental management.

3.
J Environ Manage ; 358: 120904, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643624

RESUMO

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.

5.
J Hazard Mater ; 469: 134034, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521036

RESUMO

Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.


Assuntos
Chloroflexi , Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias/genética , Etilenos , Água Subterrânea/microbiologia
6.
Innovation (Camb) ; 5(2): 100588, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38440259

RESUMO

The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximize their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorized under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0 ± 3.5°C), wetlands (4.9 ± 3.2°C), green walls (4.1 ± 4.2°C), street trees (3.8 ± 3.1°C), and vegetated balconies (3.8 ± 2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [tropical]). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience.

7.
Heliyon ; 10(1): e23422, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169809

RESUMO

Zero-valent iron (ZVI) has been extensively studied for its efficacy in removing heavy metals, nitrate, and chlorinated organic compounds from contaminated water. However, its limited effectiveness due to rapid passivation and poor selectivity is prompting for alternative solutions, such as the use of aluminium alloys. In this study, the efficacy of five distinct aluminium alloys, namely Al-Mg, Al-Fe, Al-Cu, and Al-Ni, each comprising 50 % Al by mass at a concentration of 10 g/L, was assessed using copper, nitrate and trichloromethane (TCM) as model contaminants. Results show that chemical pollutants reacted immediately with Al-Mg. On the contrary, the remaining three alloys exhibited a delay of 24 h before demonstrating significant reactivity. Remarkably, Al-Mg alloy reduced nitrate exclusively to ammonium, indicating minimal preference for nitrate reduction to N2. In contrast, the Al-Cu, Al-Ni, and Al-Fe alloys exhibited N2 selectivity of 3 %, 5 %, and 19 %, respectively. The removal efficiency of copper, nitrate and TCM reached 99 % within 24 h, 95 % within 48h and 48 % within 48h, respectively. Noteworthy findings included the correlation between Fe concentration within the Al-Fe alloy and an increased N2 selectivity from 9.3 % to 24.1 %. This resulted in an increase of Fe concentration from 10 % to 58 % albeit with a concurrent reduction in reactivity. Cu2+ removal by Al-Fe alloy occurred via direct electron transfer, while the removal of nitrate and TCM was facilitated by atomic hydrogen generated by the alloy's hydrolysis. Intriguingly, nitrate and TCM suppressed Cu2+ reduction, whereas Cu2+ improved nitrate reduction and TCM degradation. These findings demonstrate the great potential of Al-Mg and Al-Fe alloys as highly efficient agents for water remediation.

8.
J Hazard Mater ; 465: 133324, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150760

RESUMO

In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.


Assuntos
Água Potável , Humanos , Escherichia coli , Abastecimento de Água , Medição de Risco , Microbiologia da Água
9.
Front Microbiol ; 14: 1338297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111641
10.
J Environ Manage ; 347: 119145, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806270

RESUMO

This research evaluates a novel decision support system (DSS) for planning brownfield redevelopment. The DSS is implemented within a web-based geographical information system that contains the spatial data informing three modules comprising land use suitability, economic viability, and ground risk. Using multi-criteria decision analysis, an evaluation was conducted on 31,942 ha of post-industrial land and around Liverpool, UK. The representativeness and credibility of the DSS outputs were evaluated through user trials with fifteen land-use planning and development stakeholders from the Liverpool City Region Comined Authority. The DSS was used to explore land use planning scenarios and it could be used to support decision making. Our research reveals that the DSS has the potential to positively inform the identification of brownfield redevelopment opportunities by offering a reliable, carefully curated, and user-driven digital evidence base. This expedites the traditionally manual process of conducting assessments of land suitability and viability. This research has important implications for assessing the impact of current and future planning policy and the potential for the use of digital tools for land use planning and sustainability in the UK and globally.


Assuntos
Sistemas de Informação Geográfica , Indústrias , Poder Psicológico
11.
Sci Total Environ ; 904: 166968, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704157

RESUMO

The demand for munitions that are less likely to detonate accidentally has led to an increased use of Insensitive High Explosives (IHE), which contain substances like 2,4-dinitroanisole (DNAN) and 5-nitro-1,2,4-triazol-3-one (NTO). These substances have different properties compared to traditional explosives, and their potential environmental impact is not well understood. When these explosives are used in live-fire training exercises, their residues end up in the soil. It is important to determine how these residues dissolve and enter the soil. This study aimed to experimentally measure the rate at which an IHE formulation dissolves when exposed to rainwater with pH levels of 5.0 and 6.5, and to simulate how these residues dissolve and move through two different soil types. The dissolution rates were determined by conducting experiments in which IHE particles (30-60 mg) were exposed to water with varying pH levels and temperatures. The results showed that the dissolution rate of NTO did not vary with pH, while the dissolution rate of DNAN and RDX decreased with decreasing pH. Specifically, the dissolution rate of DNAN decreased from 18 ± 40 µg min-1 at pH 6.5 to 6 ± 4 µg min-1 at pH 5.0, while the dissolution rate of RDX decreased from 8 ± 4 to 3 ± 1 µg min-1. These findings were used to develop a stochastic model that successfully simulated the concentration of IHE in the leachate from soil columns over time. A sensitivity analysis revealed that while dissolution rates determined the amount of mass entering the soil, they did not significantly regulate the amount of mass that migrated through the soil and leached out of the soil columns.

12.
Chemosphere ; 343: 140244, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758076

RESUMO

In this study, the potential of bioleaching to extract valuable metals from industrial by-products, specifically basic oxygen steelmaking dust (BOS-D) and goethite was investigated. These materials are typically discarded due to their high zinc content and lack of efficient regeneration processes. By using Acidithiobacillus ferrooxidans, successful bioleaching of various metals, including heavy metals, critical metals, and rare earth elements was achieved. The Taguchi orthogonal array design was used to optimise the bioleaching process, considering four variables at three different levels. After 14 days, the highest metal extraction for the BOS-D (11.2 mg Zn/g, 3.2 mg Mn/g, 1.6 mg Al/g, 0.0013 mg Y/g, and 0.0026 mg Ce/g) was achieved at 1% solid concentration, 1% energy source concentration, 1% inoculum concentration, and pH 1.5. For goethite, the optimal conditions were 1% solid concentration, 4% energy source concentration, 10% inoculum concentration, and pH 2 resulting in a extraction of 26.6 mg Zn/g, 2.1 mg/g Mn, 1.8 mg Al/g, 0.01 mg Co/g, 0.0022 mg Y/g. These findings are significant, as they demonstrate the potential to extract valuable metals from previously discarded industrial by-products. The extraction of such metals can have substantial economic and environmental implications, while simultaneously reducing waste in the metallurgical industry. Furthermore, the preservation of initial concentration of iron in both BOS-D and goethite residues represents a significant step towards implementing more sustainable industrial practices.

13.
Chemosphere ; 337: 139404, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399998

RESUMO

The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Ecossistema , Minerais/química , Oxirredução
14.
Sci Total Environ ; 900: 165739, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499826

RESUMO

There is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.

15.
BJPsych Open ; 9(4): e120, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403494

RESUMO

BACKGROUND: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. AIMS: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. METHOD: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. RESULTS: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. CONCLUSIONS: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.

16.
Sci Total Environ ; 892: 164720, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302607

RESUMO

This study aimed to investigate the potential of three bioamendments (rice husk biochar, wheat straw biochar, and spent mushroom compost) to enhance microbial degradation of crude oil in saline soil. A soil microcosm experiment was conducted, comparing the response of soil microorganisms to crude oil under saline (1 % NaCl) and non-saline conditions. The soils were amended with different bioamendments at varying concentrations (2.5 % or 5 %), and degradation rates were monitored over a 120-day period at 20 °C. The results showed that the bioamendments significantly influenced the degradation of total petroleum hydrocarbons (TPH) in both non-saline and saline soils by 67 % and 18 % respectively. Non-saline soils exhibited approximately four times higher TPH biodegradation compared to saline soils. Among the bioamendments, rice husk biochar and spent mushroom compost had the greatest impact on biodegradation in saline soil, while wheat straw and rice husk biochar combined with spent mushroom compost showed the most significant effects in non-saline soil. The study also revealed that the bioamendments facilitated changes in the microbial community structure, particularly in the treatments with rice husk biochar and wheat straw biochar. Actinomycetes and fungi were found to be more tolerant to soil salinity, especially in the treatments with rice husk biochar and wheat straw biochar. Additionally, the production of CO2, indicating microbial activity, was highest (56 % and 60 %) in the treatments combining rice husk biochar or wheat straw biochar with spent mushroom compost in non-saline soil, while in saline soil rice husk biochar treatment (50 %) was the highest. Overall, this research demonstrates that the application of bioamendments, particularly rice husk biochar and wheat straw biochar combined with spent mushroom compost, can effectively enhance the biodegradation of crude oil in saline soil. These findings highlight the potential of such bioamendments as green and sustainable solutions for soil pollution, especially in the context of climate change-induced impacts on high-salinity soils, including coastal soils.


Assuntos
Agaricales , Oryza , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Salinidade , Solo/química , Carvão Vegetal/química , Triticum , Poluentes do Solo/análise
18.
Environ Technol ; : 1-13, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36779296

RESUMO

Mercury pollution is a critical, worldwide problem and the efficient, cost-effective removal of mercury from complex, contaminated water matrices in a wide pH range from strongly acidic to alkaline has been a challenge. Here, AlZn and AlFe alloys are investigated and a new process of synergistic reduction-amalgamation and in situ layered double hydroxide (SRA-iLDH) for highly efficient capture of aqueous Hg(II) is developed using AlZn alloys. The parameters include the pH values of 1-12, the Hg(II) concentrations of 10-1000 mg L-1, and the alloy's Zn concentrations of 20%, 50% and 70% and Fe concentrations of 10%, 20% and 50%. The initial rate of Hg(II) uptake by AlZn alloys decreases with increasing Zn concentration while the overall rate is not affected. Specifically, AlZn50 alloy removes >99.5% Hg(II) from 10 mg L-1 solutions at pH 1-12 in 5 min at a rate constant of 0.055 g mg-1 min-1 and achieves a capacity of 5000 mg g-1, being the highest value reported so far. The super-performance of AlZn alloy is attributed to multiple functions of chemical reduction, dual amalgamation, in situ LDH's surface complexation and adsorption, isomorphous substitution and intercalation. This study provides a simple and highly efficient approach for removing Hg(II) from complex water matrices.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36767132

RESUMO

Microbial biodegradation is considered as one of the most effective strategies for the remediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs). To improve the degradation efficiency of PAHs, PAH-degrading consortia combined with strengthening remediation strategies was used in this study. The PAH biodegrading performance of seven bacterial consortia constructed by different ratios of Mycobacterium gilvum MI, Mycobacterium sp. ZL7 and Rhodococcus rhodochrous Q3 was evaluated in an aqueous system containing phenanthrene, pyrene, benzo[a]pyrene and benzo[b]fluoranthene. Bacterial consortium H6 (Q3:ZL7:MI = 1:2:2) performed a high degrading efficiency of 59% in 8 days. The H6 was subsequently screened to explore its potential ability and performance to degrade aged PAHs in soils from a coking plant and the effects of strengthening strategies on the aged PAH degradation, including the addition of glucose or sodium dodecyl benzene sulfonate (SDBS) individually or as a mixture along immobilization of the inoculant on biochar. The highest degradation efficiencies, which were 15% and 60% for low-molecular-weight (LMW) PAHs and high-molecular-weight (HMW) PAHs, respectively, were observed in the treatment using immobilized microbial consortium H6 combined with the addition of glucose and SDBS after 24 days incubation. This study provides new insights and guidance for future remediation of aged PAH contaminated soils.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Biodegradação Ambiental , Consórcios Microbianos , Solo , Poluentes do Solo/análise , Bactérias/metabolismo , Microbiologia do Solo
20.
Sci Total Environ ; 869: 161797, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716874

RESUMO

The environmental impact of Insensitive High Explosive (IHE) detonation residues to soil quality was assessed using a series of outdoor soil mesocosms. Two different soils were used including a pristine sandy soil and a land-degraded soil collected from a training range. Both soils were spiked with an IHE mixture comprised of 53 % NTO, 32 % DNAN and 15 % RDX at three different concentrations 15, 146 and 367 mg/kg respectively. The concentration levels were derived from approximate residues from 100 detonations over a 2 week training period. A set of five physico-chemical and biological indicators representative of the two soils were selected to develop environmental quality indexes (EQI). It was found that none of the concentrations tested for the pristine soil affected the chemical, biological and physical indicators, suggesting no decrease in soil quality. In contrast, the EQI for the degraded soil was reduced by 24 %, mainly due to a decrease in the chemical and biological components of the soil. Therefore, it is concluded that depending on the soil health status, IHE residues can have minor or severe consequences on soil health. Further studies are needed to determine the environmental impact of IHE on soil and water especially in the case where a larger number of detonations are more likely to be carried out on a training range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...